Optimal Management of Newly Diagnosed Transplant Eligible Multiple Myeloma

Saad Usmani, MD FACP

Director, Plasma Cell Disorders

Director, Clinical Research in Hematologic Malignancies

Multiple Myeloma(MM): Not One Disease

- MGUS to Active MM transition period is different among patients.
- Diagnosis is made at variable time-points during the transition, so degree of end organ damage is different.
- Management strategies are focusing on changing myeloma in to a chronic illness for majority of patients, probably curative for a subset. [Martinez-Lopez J et al Blood 2011;Usmani et al Leukemia 2012
- Good and standard risk patients make up ~80%, benefiting most from strategy combining novel agents and high dose melphalan/stem cell rescue. [Ching et al Leukemia 2013]

Goals of Induction Therapy

- High response rate; rapid response
- Improve performance status
- Minimize negative effect on QoL
- Not limit PBSC mobilization
- Achieving maximal response
 - $-> VGPR > CR > \overline{sCR} > ?? MRD-ve$
 - MRD Assessment requires optimization and not ready for prime time

Achieving ≥ VGPR/CR = Better Outcomes

1. Harousseau JL, et al. J Clin Oncol. 2009;27:5720. 2. Kapoor P, et al. J Clin Oncol. 2013;31:4529-4535.

MRD Flow Cytometry Helps Predict Outcomes Post Transplant

International Myeloma Foundation is leading a multi-center, standardization effort.

MRD by High-Throughput Sequencing Predicts Prognosis in Patients With CR

 Quantitative; with amplification and sequencing of immunoglobulin gene segments using consensus primers for: immunoglobulin heavy-chain locus complete (IGH-VDJH), IGH incomplete (IGH-DJH), and immunoglobulin κ locus (IGK)

Good Combinations = Better Depth Of Response

Induction Regimens for Newly Diagnosed Transplant Eligible MM

Is Upfront High Dose Melphalan Important?

Median Follow-up: 51.2 months

	MPR	MEL200	p value
Median PFS	22.4 months	43 months	<0.0001
OS at 4 years	65.3%	81.6%	0.02

Rd*

1,8,15,22

centers

	R Maintenance	Observation	p value
Median PFS	21.6 months	41.9 months	<0.0001
OS at 3 years	88%	79%	NS

Summary Of Abstract #8510

- Modern Total Therapy: KRd Induction x 4 cycles + ASCT + KRd Consolidation x 4 cycles + KRd Maintenance x 10 cycles
- Unprecedented Depth of Response
 - ? MRD Assessment
- AE/SAE: Acceptable
- ? Details of the High Risk Breakdown
 - Perhaps a better question in a larger cohort of patients
- ? Optimal Carfilzomib Dose/Schedule
 - Especially in light of ENDEAVOR trial data

Summary Of Abstract #8511

- Pooled data from 2 phase III studies with heterogeneous induction regimens
 - Non-bortezomib based regimen in majority of patients
- Primary endpoint for PFS met but too early for OS
 - Better depth of response post-consolidation
 - Benefit seen most in patients who were 'high-risk' and did not get bortezomib-based induction.
- Surprisingly low peripheral neuropathy

Impact of New Data On Current Practice

- Current Standard of Care in US:
 - Triplet Induction: Bortezomib used as part of induction from majority of US transplant eligible patients
 - ? Consolidation
 - Lenalidomide or bortezomib maintenance
- Impact of New Data: Not practice changing at the moment
- Need head-to-head comparison of KRd and RVd using the modern 'Total Therapy' approach (Roussel et al JCO 2014)
 - Which MRD 'Assay' to Use?

Important Phase III Trials To Look Out For...

Schema for BMT-CTN 0702

ARM 1 ARM 2 ARM 3 2nd autologous PBSC transplant Consolidation: RVD x 4 cycles Maintenance: 3 years lenalidomide

Schema for IFM/DFCI 2009

Thank you for your attention!

