

Update on the Initial Therapy of Multiple Myeloma

Donna E. Reece, M.D. Princess Margaret Cancer Center Toronto, ON 01 June 2013

Multiple Myeloma

- Clonal proliferation of malignant plasma cells
- Overall incidence 5/100,000 but much higher in the elderly
- Median age ~65 years
- Genetic component recently recognized³
 - 15-35% of MGUS/MM derive from a chronic autoimmune response driven by hyperphosphorylated 'paratargs' in individuals with permissive HLA background

Multiple Myeloma

- Diagnosis based on finding over 10% plasma cells in bone marrow
- In most cases, plasma cells make a monoclonal immunoglobulin protein
- "CRAB" = Symptomatic myeloma requiring treatment
 - Anemia—Hgb < 10 g/dL (or 2 g/dL below normal)
 - Bone lesions
 - Creatinine > 176 umol/L (2 mg/dL)
 - Hypercalcemia > 2.8 mmol/L (11.5 mg/dL)

Multiple Myeloma **Key Features of Biology-1**

All patients progress through an MGUS phase¹ ightarrow

Normal PC

MM

Intramedullary Extramedullary MM

Cell lines

- Myeloma is not one disease² ightarrow
 - At least 7 subtypes based on cytogenetic and molecular features
 - Highest risk cytogenetic subtypes by FISH
 - t(4;14) • del 17p
 - t(14;16) abnormalities of chromosome 1
- End stage disease may be characterized by ightarrow
 - Extramedullary disease
 - Loss of monoclonal protein

¹Kristinsson SY, et al. Int J Cancer 2009; 125" 2147-2150; ² Bergsagel L, Chesi M. Int J Hematol 2013; 97: 313-323.

Multiple Myeloma Key Features of Biology-2

 Pathophysiology depends on interaction with marrow microenvironment¹

Progression is not linear process²
 -- Concept of "clonal tiding"

¹Manier et al. J Biomed Biotechnol. Epub 2012 Oct ; ²Keats JJ, et al. Blood. 2012;120:1067-76.

Canadian/European Treatment Algorithm Multiple Myeloma

Evolving U.S. Treatment Algorithm Multiple Myeloma

ASCT in Myeloma Where we were..

VAD Dexamethasone alone Dexamethasone + thalidomide

Outcomes

Overall response rate80%CR/nCR rate20%Median PFS20-28 mosMedian overall survival48-60 mos

Modern Components of ASCT

Considerations in interpreting phase III studies:

- Timing of randomization may affect results
- Most include novel agents before and after ASCT

Pre-ASCT Induction Therapy Phase III Trials

Bortezomib-based induction

- IFM 2005-02: BD vs VAD
- HOVON 65/GMMG-HD4: PAD vs VAD
- GIMEMA MMY-3006: VTD vs thal + dex
- PETHEMA: VTD vs VBCMP/VBAD/Vel vs thal + dex
- IFM 2007-02: vTD vs BD
- Thalidomide-based induction
 - HOVON-50: TAD vs VAD
 - MRC IX: CTD vs CVAD

A=adriamycin; B or vel=bortezomib; C=cyclophosphamide; D or dex=dexamethasone; P=proteasome inhibitor=bortezomib; T or thal=thalidomide

Post-Induction Results in Phase III Trials

Study/	Ν	Induction	Overall response	e ≥VGPR	CR/nCR
Author		regimen	rate (X)	(%)	(%)
IFM 2005-02	482	BD	78	38	15
Harousseau		VAD	63	15	6
HOVON 65/GMMG-HD4	613	PAD	83	42	15
Sonneveld		VAD	59	11	5
GIMEMA MMY-3006	447	VTD	93	62	31
Cavo		Thal + dex	79	28	11
PETHEMA/GEM Rosinol	386	VTD Thal + dex VBMCP/VBAD/B	82 64 75	60 29 36	35 14 22
IFM 2007-02	199	vTD	88	49	31
Moreau		BD	81	36	22

Do Novel Induction Regimens Confer Better PFS/OS?

Study/ Author	Induction regimen	Median PFS (mos)	3 year PFS (%)	Median OS (mos)	3-year OS (%)
IFM 2005-02 Harousseau	BD VAD	36 30			81% 77%
HOVON 65/GMMG-D4 Sonneveld	PAD VAD	35 28	48% 42%		61% 55% (5-year)
GIMEMA MMY-3006 Cavo	VTD Thal + dex	NYR NYR	68% 56%		86% 84%
PETHEMA/GEM Rosinol	VTD Thal + dex VBMCP/VBAD/B	56.2 28.2 35.5	 		74% 65% 70% (4-year)
IFM 2007-02 Moreau	vTD BD	26 30			

Where we are now..... Summary of Phase III Trial Results

	Induction Rx	ASCT + Maintenance	≥ VGPR (CR+nCR) (%)	PFS (Median)	OS (Median)
Harousseau ¹	Bortezomib + Dex	1 or 2 (lenalidomide maintenance in some)	68% (39%)	36 mo	NYR 81% (3-year)
Cavo ²	VTD	2 + VTD consolidation + dex maintenance	89% (71%)	NYR 68% (3-year)	NYR 86% (3-year)
Sonneveld ³	PAD	1 or 2 + bortezomib maintenance	76% (49%)	35 mos	NYR 61% (5-year)
Rosinol ⁴	VTD	1 + VT = bortezomib and thalidomide maintenance	NA (46%)	56.2 mos	NYR 74% (4-year)

¹Harousseau JL, et al, J Clin Oncol 2012;28: 4621-4629; ²Cavo M.et al. Lancet 2010;376: 2075-2085;⁴Sonneveld P, et al .J Clin Oncol 2012;30: 2946-2955; ⁴Rosinol L, et al. Blood 2012;120: 1589-1596.

Phase 3 trials of Bortezomib-Containing Induction Regimens *Meta-Analysis* (n=2086)

Impact of bortezomib induction on overall survival

Study name	Hazards ratio	Lower limit	Upper limit	Relative weight	p-Value
Harousseau, JL	0.749	0.483	1.162	19.26	0.197
Cavo, M	0.856	0.516	1.419	14.56	0.545
Sonneveld, P	0.730	0.558	0.956	51.24	0.022
Rosinol, L	1.018	0.618	1.676	14.94	0.945
Pooled HR	0.789	0.651	0.957		0.016

Nooka et al. ASH 2011 (Abstract 3994), poster presentation

3- and 4-drug Bortezomib-based Induction Trials

Regimen	N	N With	I	Gr 3/4 PN		
		ASCT	≥PR	≥VGPR	≥CR/nCR	(%)
VDD ¹	30	20	93	63	40	2.5/0
VRD ²	31	31	94	39	23	NA
RVDD ³	68	24	96	58	30	6/0
VTDC ⁴	49	48	96	69	44	4/0
VTD ⁴	49	40	100	69	51	8/2
CyBor-D ⁵ (weekly)	83	30	97	79		0/0

¹Jakubowiak A, et al. Blood 2008; 112: abstract 3713; ²Roussel M et al. Blood 2011; 118: abstract 1872; ³Jakubowiak A, et al. Blood 2009; 114: abstract 132; ⁴Ludwig H, et al. J Clin Oncol 2013; 31: 247-255.; ⁵ Areethamsirikul N, et al. Submitted IMW 2013

Weekly CyBorD (1.5 mg/m²) Induction *PMH Experience (N=83)*

- Pre-ASCT response (after 4 cycles)
 - Overall response rate 93%
 - *− ≥ VGPR 70%*

Toxicity

– Grade 3-4 neutropenia	3.6%
— Grade 3-4 thrombocytopenia	< 1%
 Grade 3-4 neuropathy 	0
 Dose reductions/delays of any drug 	18%
 Only 3 did not go to transplant 	3.6%
Day 100 post-ASCT outcomes	
– Overall response rate 97%	
— ≥ VGPR 79%	

Lenalidomide and Dex before ASCT

- No prospective phase III trials comparing Len + dex with other regimens specifically as pre-ASCT induction
- In ECOG E4A03, 90 pts undergoing ASCT had 2-year PFS of ~64% and 3-year OS of 92%
- GIMEMA Phase III trial compares Len + dex x 4 cycles followed by either ASCT x 2 or MPR (+/- len maintenance)

Parameter	ASCT x 2	MPR
Overall Response rate VGPR CR	96% 62% 25%	95% 60% 20%
3-year PFS	60%*	38%
3-year OS	80%	79%
*p <0.001	Update ASCO 2013	B, Boccadoro M et al. A

¹Rajkumar SV et al. Lancet Oncol. 2010; 11(1): 29–37; ²Cavelli F et al. Haematologica 2012; 97 (Suppl 1): 472-473.

Definitions of Post-ASCT Therapy

- Maintenance therapy—any treatment administered after the completion of induction therapy in patients whose disease is either responsive or non-progressive, with the goal of prolonging survival¹
 - Steroids
 - Interferon-alpha
 - IMiDs (thalidomide, lenalidomide)
 - Bortezomib
- Consolidation therapy—relatively intensive short-term post-ASCT therapy
 - Total therapy programs (DPACE², VTDPACE³, VRD³)
 - VTD=bortezomib + thalidomide + dex
 - RVD=lenalidomide + bortezomib + dex
 - Lenalidomide alone
 - Bortezomib alone

¹Anderson KC, et al. Leukemia 2008; 22: 231-239.; ²Zangari M et al. Br J Haematol 2008; 141: 433-444; ³Nair B, et al. Blood 2010; 115: 4168-4173.

Post-ASCT Maintenance Therapy Phase III Trials

- Thalidomide—7 trials
- Bortezomib
 - HOVON MM 65/GMMG-HD4
 - Nordic Myeloma Study Group trial
 - PETHEMA/GEM trial—VT vs thal vs interferon-α
- Lenalidomide—2 trials
 - IFM 2005-02 with lenalidomide consolidation + maintenance
 - CALBG 100104 trial

Thalidomide Maintenance post-ASCT Meta-analysis

Study	Maintenance N	Control N	PFS	Hazar	d ratio (fixe 95% Cl	ed)		Hazard ratio (fixed) 95% Cl
Attal	201	396			⊢			0.69 [0.54, 0.88]
Barlogie	232	345			⊢			0.70 [0.57, 0.86]
Spencer	114	129						0.50 [0.35, 0.71]
Ludwig	64	64			-11			0.55 [0.36, 0.85]
MRC-My-IX	409	409		-	-			0.73 [0.62, 0.87]
NCIC MY.10	166	166						0.56 [0.43, 0.73]
Total (95% CI)	1186	1509		•	•			0.66 [0.60, 0.73]
						-	1	
			0.2	0.5	1	2	5	

Study	Maintenance N	Control N	OS	hazard ratio (fixed) 95% Cl	haza <u>rd ratio (</u> fixed) 95% Cl
Attal Barlogie Spencer Ludwig NCICMY.10 Total (95% CI)	201 323 114 64 166 868	396 345 129 64 166 1100			0.59 [0.37, 0.93] 0.81 [0.64, 1.03] 0.41 [0.22, 0.76] 0.93 [0.53, 1.65] 0.77 [0.53, 1.12] 0.74 [0.63, 0.88]
			0.2 Fa	avors treatment	5

Nooka AK, et al. ASH 2011, abstract #1855.

Results of Canadian MY-10 Trial

(p=0.01)

40% vs. 26%

Global:

Summary of Phase III Trials of Lenalidomide Maintenance vs Placebo after ASCT

Author/Year	N	Pre-ASCT Induction	# ASCT	Consolidation	PFS/TTP Median (months)	Overall Survival (%)
Attal (IFM 2005-02)	614	VAD or BD	1 or 2	Len 25 mg x 2 mos in all	Lenalidomide 41 Observation 23	73% 75% (4-year)
McCarthy (CALBG 100104)	568	Lenalidomide 32% Bortezomib 42% Thalidomide 16%	1		Lenalidomide 46 Observation 27	88% 80% (3 year)

Attal M, et al. N Engl J Med 2012: 366: 1782-1791. McCarthy PL, et al. N Engl J Med 2012: 366: 1770-1781.

Lenalidomide Maintenance Effect on PFS/TTP

IMF 2005-02

CALGB 100104

Median follow-up 45 mos.

Median follow-up of ~ 48 mos.

Attal M, et al. N Engl J Med 2012; 366: 1782-1791. McCathy PL, et al. Clin Leuk Lymph Myeloma 2013: Suppl 1: abstract.

Lenalidomide Maintenance Effect on Overall Survival

IMF 2005-02

CALGB 100104

McCathy PL, et al. Clin Leuk Lymph Myeloma 2013: Suppl 1: abstract.

Attal M, et al. N Engl J Med 2012; 366: 1782-1791.

Significant Toxicity with Lenalidomide Maintenance Phase III Trials

Toxicity	IMF 20	05-02	CALGB			
	Len	Placebo	Len	Placebo		
Neutropenia	43%	14%	43%	9%		
Thrombocytopenia	12%	6%	13%	4%		
Febrile neutropenia	2%	0.1%	6%	2%		
Documented Infection	10%	4%	16%	5%		
Discontinuation of lenalidomide	6%	4%	13%	2%		
2º malignancy	N=23 (6.8%)	N=6 (1.6%)	N=18 (6.5%)	N=4 (2.6%)		

Attal M, et al. ASCO 2010; abstract #8018; McCarthy PL, et al. ASCO 2010; abstract #8017; Attal M, personal communications; IMWG Feb 2011.

Effect of Novel Agents in Induction Therapy on ASCT Outcomes at PMH (N=754)

PMH Approach

- Bortezomib-based regimens introduced in 2008
- Thalidomide maintenance used when possible until 2011
- Lenalidomide maintenance (until progression) introduced in 2011

Jimenez-Zepeda, V et al. Unpublished data

Bortezomib-Based Maintenance

• HOVON MM 65/GMMG-HD4

- PAD + bortezomib maintenance
 vs VAD + thal maintenance
- 1 or 2 ASCTs
- Significant improvement in PFS and OS for PAD + B maintenance
- Improvement for del 17p subset

• PETHEMA/GEM study

- VTD vs TD vs VBCMP/VBAD+ B
- 1 ASCT
- VT vs thal vs interferon maintenance
- Significant improvement in PFS for VT maintenance

Sonneveld P, et al. J Clin Oncol 2012; 30: 2946-2955; Rosinol L, et al. Blood 2012; 120:

Post-ASCT Measures Consolidation Trials

- Cavo et al.(GEMIMA study)
 VTD x 3 → ASCT x 2 → VTD x 3
- Roussel et al. (IFM 2008)
 VRD x 3 → ASCT → VRD x 2 → lenalidomide maintenance x 1 year
- Sonneveld et al. (HOVON)
 − CTD* x 4 → ASCT → CTD* x 4

*Carfilzomib + thalidomide + dex

¹Cavo M, et al. Blood 2012; 120: 9-19; ² Roussel M, et al. Blood 2011; 118: abstract 1872; ³Sonneveld P, et al. Blood 2012; 120: abstract 333.

Results of Post-ASCT Consolidation

Study	Trial Type	Rx	Maint	Post-ASCT Response (%)			co Re	Post- nsolidati sponse (on %)	PFS
				≥PR	≥VGPR	CR	≥PR	≥VGPR	CR	
Cavo ¹	III	VTD	Dex			55			61	60% (3 yr)
Roussel ²	II	VRD	Len x 1 yr	91	26	42	94	36	48	
Leleu ³	Retro	VTD	None	96	43	33	96	31	52	
Sonneveld ⁴	II	CTd	None	91	60	18	94	84	44	97% (1 yr)

¹Cavo M, et al. Blood 2012; 120: 9-19; ² Roussel M, et al. Blood 2011; 118: abstract 1872; ³Leleu X, et al. Leukemia Epub ahead of print 4 April 2013; ⁴Sonneveld P, et al. Blood 2012; 120: abstract 333.

Post-ASCT Therapy: CTN Trial

- Improved response rates after newer frontline regimens
- Median PFS has improved from 2 to 3 years
 Should target minimum PFS of 3 years with your approach
- Post-transplant therapy can improve response rates and PFS further
 - Both maintenance and consolidation have efficacy
 - Impact on survival less clear but 2 studies and a metaanalysis show benefit

ASCT in Myeloma Summary-2

- More individualized approaches desirable
 - Reliable identification of subsets most likely to benefit from post-ASCT therapy
 - Use of MRD to direct need for and duration of therapy
- It is important to have a strategy for transplant-eligible patients
 - Should be able to provide PFS for initial therapy with your approach
 - Keep in mind that minimal data is available for PFS after deferred ASCT in any risk group
 - Phase III trials are in progress

Treatment Strategies in Older Multiple Myeloma Patients: Phase III Trials

- Addition of novel agent to melphalan and prednisone
 - MP + thalidomide (MPT)
 - MP + bortezomib (VMP) +/- VP or VT maintenance
 - MP + lenalidomide with lenalidomide maintenance (MPR + R)
 - VMPT + VT maintenance
- Continuous treatment with IMiD and steroids
 - Thalidomide + dex--generally too toxic
 - Lenalidomide + weekly dex promising
 - Widely used in US based on ECOG trial
 - MM020 trial results awaited (MPT vs Len + dex)
- Other 3- and 4-drug regimens
 aCTD

Meta-analysis: MPT vs MP (n=1685) Progression-Free and Overall Survival

• Addition of thalidomide to MP demonstrates significant improvement in PFS and overall survival

Fayers PM, et al. Blood 2011; 118: 1239-1247

Meta-analysis: MPT vs MP Adverse Events ≥ Grade 3

 Addition of thalidomide to MP is associated with significantly greater incidence of grades 3-4 neurotoxicity and DVT

Kapoor *et al.* ASH 2009 (abstract 615); Presentation Slides: http://myeloma.org/pdfs/ASH2009_Kapoor_615.pdf

Newer Induction Regimens for Elderly Patients Bortzomib-Containing Regimens

Regimen	Maintenance	Trial type	ORR (%) (CR/nCR)	Median PFS (mos)	Median OS (mos)
MP ¹	-	III	35%(4%)	16.6	43.1
VMP ¹	-	Ш	71% (30%)	24	56.4
VMP ²	+ (VT or VP)	111	91-95% (39-46%)	32-39	50-69% (5-year)
VMP ³	+ (V)	111	69% (33%)	17.3	88.9% (1-year)
VTD ³	+ (V)	III	80% (40%)	13.8	86.1% (1-year)
Bor + dex ³	+ (V)	111	73% (30%)	14.7	87.4% (1-year)
VMPT ⁴	+ (VT)	III	89% (38%)	35.3	61% (5-year)

¹ San Miguel JF, et al. N Engl J Med 2008; 359: 906-917; San Miguel SF, et al. J Clin Oncol 2013; 31: 448-455; ²Mateos MV et al. Blood 2012: 120: 2581-2588; ⁶Niesvizky R, et al. Blood 2011; 118: abstract 478; ⁴Palumbo A, et al. Blood 2012; 120: abstract 200.

Newer Induction Regimens for Elderly Patients IMiD-Based

Regimen	Maintenance	Trial type	ORR (%) (CR/nCR)	Median PFS (mos)	Median OS (mos)
MP ¹	-	Meta	37%	14.9	32.7
MPT ¹	+/-	Meta	59%	20.3	39.3
MPR-R	+ (R)	III	77% (10%)	31	70% (3-year)
Len+ dex ³	NE	III	74%	22	73% (3-year)
aCTD ⁷	+/-	Ш	64% (13%)	13	31

¹Fayers PM, et al. Blood 2011; 118: 1239-1247; ²Palumbo A, et al. N Engl J Med 2012; 366: 1759-1769; ³Jacobus S et al. Haematologica 2010; 95 (Suppl 2): 149, abstract 0307.; ⁴Mrogan GJ, et al. Blood 2011; 118: 1231-1238;

Toxicity Concerns in Elderly Patients

Drug	Peripheral Neuropathy	Fatigue	Myelosuppression	VTE	Secondary cancers
Melphalan	-	(+)	+++	-	++
Cyclophosphamide (weekly or daily)	-	+	+	-	+
Thalidomide	+++	+++	-	++	-
Bortezomib	+++	+	+	-	-
Lenalidomide	-	++	++	++	++ (mostly with alkylating agents)

Patient tolerance improved with:

-- Weekly dosing of bortezomib in combinations

-- Low- dose weekly dexamethasone

Selection of Therapy in Elderly Patients Considerations

- Disease-related factors
 Aggressive disease
 - Renal failure
- Patient-related factors
 - Fragility
 - Age over 75 years
 - Mobility
 - Co-morbidities (diabetes, PN, hx VTE)
- Treatment-related

 Myelosuppression
 PN

Sortezomib-based

Two agents (Len + dex)

Future Directions

- MP + MLN 9708¹
- MP + carfilzomib

ASCO 2013, Touzeau C, et al. Abstract 8513.

- Lenalidomide + dex +/- elotuzumab²
- Lenalidomide + dex +/- MLN 9708³
- CRd = carfilzomib + lenalidomide + dex ASCO 2013, Jakubowiak AJ, et al. Abstract 8513.
- CCd = carfilzomib + cyclophosphamide + dex⁴

¹Kumar S, et al. Blood 2012; 120: abstract 633; ²Lonial S, al. J Clin Oncol 2012; 30: 1953-1959; ³Richardson PG, et al. Blood 2012; 120: abstract 727; Palumbo A, et al. Blood 2012; 120: abstract 730.

Elderly Myeloma Patients Summary-1

- Addition of novel agent to MP improves TTP/PFS
 - Toxicity is increased
 - MPT and VMP are both effective
 - Weekly bortezomib much better tolerated
 - Shingles prevention required with bortezomib
 - Mixed results for overall survival
- Maintenance therapy prolongs PFS
 Survival benefit noted in one study

Elderly Myeloma Patients Summary-2

- Thalidomide + dexamethasone not recommended
 Too toxic
- Lenalidomide + weekly dex very well tolerated
 PFS appears similar to MP + novel agent but no phase III data yet
- Regimens using newer proteasome inhibitors (carfilzomib and MLN 9708) under development

Summary/Conclusions

- Laboratory insights are helping to dissect biology of disease and stratify patients
- New drugs/combinations are improving outcomes
- Improvements in toxicity management in progress
- Newer classes of drugs are under development
- New methods to evaluate myeloma burden will be useful
- Efforts to personalize myeloma treatment are evolving